\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Arithmetic
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Rational Real Homomorphism

Why

Do the rational numbers correspond (in the sense of Homomorphisms) to elements of the reals.

Main result

Indeed, roughly speaking the rationals correspond to elements of the reals which are bounded above by that rational. Denote by $\tilde{\R }$ the set $\Set{q \in \R }{\exists s \in \Q , q = \Set{t \in \Q }{t < s}}$.

The fields $(\tilde{\R }, +_{\R } \mid \tilde{\R }, \cdot _{\R } \mid \tilde{\R })$ and $(Q, +_{\Q }, \cdot _{Q})$ are homomorphic.1
The function is $f: \Q \to \R $ with $f(q) = \Set{(r \in \Q }{r < q}$

  1. Indeed, more is true and will be included in future editions. There is an order perserving field homomorphism. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view