\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Groups
Rings
Fields
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Homomorphisms

Why

We name a function which preserves algebraic structure.

Definition

A group homomorphism between two groups $(A, +)$ and $(B, \tilde{+})$ is a bijection $f: A \to B$ such that $f(1_A) = 1_B$ for $1_A \in A$ and $1_B \in B$ and $f(a + a') = f(a) \tilde{+} f(a')$ for all $a, a' \in A$. We define a ring homomorphism and field homomorphism similarly.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view