\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Image Measures
Random Variables
Needed by:
Random Variables Joint Law
Links:
Sheet PDF
Graph PDF

Random Variable Laws

Why

We name the image measures of real-valued random variables.

Definition

The law of a random variable is the image measure of the probability measure under the random variable.

For example, if the random variable is real-valued we use the topological sigma algebra of the real numbers and the law is the image measure on $\R $ induced by the probability measure.

Notation

Let $(X, \mathcal{A} )$ and $(Y, \mathcal{B} )$ be two measurable spaces. Let $f: X \to Y$ be a random variable. Let $\mu : \mathcal{A} \to \nneri$ be a probability measure. We denote the law of $f$ by $\rvlaw{\mu }{f}$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view