\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Probability Measures
Topological Sigma Algebra
Measurable Functions
Needed by:
Central Limit Theorem
Conditional Dependency Graph
Cumulative Distribution Functions
Distortion Functions
Estimates
Independent Random Variables
Random Real Vectors
Random Variable Laws
Random Variable Sigma Algebras
Real-Valued Random Variable Expectation
Links:
Sheet PDF
Graph PDF

Random Variables

Definition

A random variable is a measurable map from a probability space to a measurable space.

A real-valued random variable is a measurable map between the probability space and the set of real numbers with its topological sigma algebra. We so frequently work with real-valued random variables that if the range the random variable is not specified, it is assumed to be a subset of $\R $.

Notation

Suppose $(X, \mathcal{A} , \mathbfsf{P} )$ is a probability space and $(Y, \mathcal{B} )$ is a measurable space. A random variable is a measurable function $f: X \to Y$.

Some authors tend to denote real-valued random variables by upper case Latin letters: for example, $X, Y, Z$. They reserve lower case letters $x$, $y$, $z$ for the elements of the codomains of these functions. In such cases, they often denote the set of outcomes as $\Omega $, which we have mentioned is a mnemonic for outcomes.

Special notation for common cases

Some authors use notation for the probability of particular, common sets. Suppose $(\Omega , \mathcal{A} , \mathbfsf{P} )$ is a probability space with $X: \Omega \to \R $ a real-valued random variable. Many authors use $\mathbfsf{P} (X \in A)$ (or $P(X \in A)$, no bold) to denote

\[ \mathbfsf{P} (X^{-1}(A)) = \mathbfsf{P} (\Set*{\omega \in \Omega }{X(\omega ) \in A}) \]

where $A \in \mathcal{B} (\R )$, the Borel sigma algebra on $\R $. We will tend to use brackets in place of parentheses for clarity. So we will write $\mathbfsf{P} [ X \in A ]$.

Similar to the above, suppose $Y: \Omega \to \R $ is a random variable and $B \in \mathcal{B} (\R )$. Then we will use $\mathbfsf{P} [X \in A, Y \in B]$ to denote

\[ \mathbfsf{P} (X^{-1}(A) \cap Y^{-1}(B)) = \mathbfsf{P} (\Set*{\omega \in \Omega }{X(\omega ) \in A \text{ and } Y(\omega ) \in B}). \]

Similarly for $n$ random variables $X_1, \dots , X_n: \Omega \to \R $, and Borel sets $A_1, \dots , A_n$, we will use $\mathbfsf{P} [X_1 \in A_1, \dots , X_n \in A_n]$ to denote $\mathbfsf{P} (\cap _{i = 1}^{n} X_i^{-1}(A_i))$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view