\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Groups
Vectors
General Linear Groups
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Linear Representations of Groups

Definition

Suppose $G$ is a finite group with identity 1 and suppose $V$ is a vector space over the field $\C $ of complex numbers. A linear representation $\rho : G \to GL(V)$ of $G$ in $V$ is a group homomorphism from $G$ to the general linear group $GL(V)$. Given $\rho $, we call $V$ a representation space (or representation) of $G$

Suppose $V$ has finite dimension $n$. In this case, we call $n$ the degree of the representation $\rho $. Given a basis $e_1, \dots , e_n$ of $V$,

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view