\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Estimates
Needed by:
Affine MMSE Estimators
Maximum Conditional Estimates
Minimum Mean Squared Error Estimator
Probabilistic Linear Model
Unbiased Estimators
Links:
Sheet PDF
Graph PDF

Estimators

Why

We have studied guessing random variables (see Estimates). What if we can use another random variable in making our estimate?

Definition

Let $(\Omega , \mathcal{A} , \mathbfsf{P} )$ be a probability space. Let $U, V$ be sets. Let $x: \Omega \to V$ and let $y: \Omega \to U$. An estimator or predictor for $x$ given $y$ is a function from $U$ to $V$. An estimate, then, corresponds to a constant estimator, and vice versa. Some authors call the selection of an estimator estimation or an estimation problem.

Error function

An error function is a function $e: U \times V \to \R $ which quantifies the cost of an error.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view