\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Random Variables
Needed by:
Estimators
Minimum Mean Squared Error Estimates
Links:
Sheet PDF
Graph PDF

Estimates

Why

We want to guess uncertain outcomes. We model these uncertain outcomes as random variables.

Definition

Suppose $(\Omega , \mathcal{A} , \mathbfsf{P} )$ is a probability space and $x: \Omega \to V$ is a random variable. An estimate (or prediction, guess) for $x$ is a value $v \in V$. Some authors call the selection of an estimate estimation or an estimation problem.

Cost functions

A cost function for an estimate in $V$ is a function $C: V \times V \to \R $. A cost function is also known as a risk function. The cost of an estimate is itself a random variable $c: \Omega \to \R $ which is $c(\omega ) = C(x(\omega ), \xi )$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view