\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Orders
Needed by:
Multiobjective Optimization Problems
Optimal Classifiers
Links:
Sheet PDF
Graph PDF

Combined Orders

Why

Given multiple orders, can we combine them?

Discussion

Suppose we have two orders $\prec_1$ and $\prec_2$ on $A$. Define $\prec$ by $a \prec b$ if and only if $a \prec_1 b$ and $b \prec_2 a$. Notice that $\prec$ is reflexive, transitive, and antisymmetric, and so it is a partial order. Call it the combined order.

Here's the rub. Even if $\prec_1$ and $\prec_2$ are total, $\prec$ may not be total.1 Consider the basic case $A = \set{a, b}$ and $\prec_1 \; = \set{(a,a), (a, b), (b,b)}$ and $\prec_2 \; = \set{(a,a), (b,a), (b,b)}$ Then $\prec \; = \set{(a,a), (b,b)}$, a partial order, to be sure, but not really any order at all.

There is not anything to be done about it, it is a fact. Total orders do not (necessarily) induce total combined orders.


  1. Future editions will include and expand. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view