\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Negligible Sets
Probability Measures
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Almost Sure Events

Why

We discuss negligible sets in the language of probability measures.

Definition

Suppose $(\Omega , \mathcal{A} , \mathbfsf{P} )$ is a probability space. An event $A \in \mathcal{A} $ happens almost surely (or almost certainly, almost always) if $\mathbfsf{P} (A) = 1$. (An equivalent condition is that $\mathbfsf{P} (\Omega \setminus A) = 0$.) Conversely, an event $B \subset \Omega $ happens almost never if $\mathbfsf{P} (B) = 0$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view