\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Norms
Matrix Transpose
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Weighted Norms

Definition

Let $W$ be a positive semidefinite $n$ by $n$ matrix. Then $g: \R ^n \to \R $ defined by $g(x) = \sqrt{x^\top W x}$ is a norm on $\R ^n$.

Notation

Let $W \in \R ^{n \times n}$, positive semidefinite. Then we denote the norm corresponding to $W$ by $\norm{\cdot }_{W}$. So then, the norm of a vector $x \in \R ^n$ is $\norm{x}_{w}$. Notice that $\norm{x}_{W} = \norm{W^{1/2}x}_2$.

Visualization1

We can compare the Euclidean norm on $\R ^2$ with the weighted norm given by

\[ W = \pmat{ 2 & 1 \\ 1 & 4 \\ } \]


  1. Future editions will visualize these norms as function on $\R ^2$, via contour plots. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view