\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Linear Transformations
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Vector Space of Linear Transformations

Why

Can we think of linear maps as vectors?

Definitions

Suppose $V$ and $W$ are some vector spaces over a field $\F $. Denote the linear maps from $V$ to $W$ by $\mathcal{L} (V, W)$ as usual.

Addition. Given $S, T \in \mathcal{L} (V, W)$ the sum of $S$ and $T$ is the linear map $R \in \mathcal{L} (V, W)$ defined by

\[ Rv = Sv + Tv \quad \text{for all } v \in V \]

Scalar multiplication. Given $S \in \mathcal{L} (V, W)$ the (scalar) product of $\lambda $ and $T$ is the linear map $Q \in \mathcal{L} (V, W)$ defined by

\[ Qv = \lambda Tv \quad \text{for all } v \in V \]

Suppose $V$ and $W$ are two vector spaces over the same field $\F $. Then $\mathcal{L} (V, W)$ is a vector space over the field $\F $ with respect to the operations of addition and scalar multiplication just defined.

The additive identity of the vector space $\mathcal{L} (V, W)$ is the zero map $0 \in \mathcal{L} (V, w)$.

Notation

Given $S, T \in \mathcal{L} (V, W)$ the sum of $S$ and $T$ and $\lambda \in \F $, we denote the sum of $S$ and $T$ by $S + T$. Hence,

\[ (S + T)(v) = Sv + Tv \quad \text{for all } v \in V \]

We denote the product of $\lambda $ and $T$ by $\lambda T$. Hence,

\[ (\lambda T)(v) = \lambda (Tv) \quad \text{for all } v \in V \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view