\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Polynomials
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Trigonometric Polynomials

Definition

A trigonometric polynomial of order $n$ is a function $u: \R \to \R $ for which there exists $\alpha _0, \alpha _1, \dots , \alpha _n, \beta _1, \beta _2, \dots , \beta _n \in \R $ so that

\[ u(x) = \alpha _0 + \sum_{k = 1}^{n} \parens*{\alpha _k \cos(kx) + \beta _k \sin(kx)}. \]

In other words,

\[ \begin{aligned} u(x) = \alpha _0 +& \alpha _1\cos x + \beta _1\sin x + \alpha _2 \cos2x + \beta _2 \sin2x + \\ &\cdot s + \alpha _n \cos nx + \beta _n \sin nx. \end{aligned} \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view