What is the optimal tree approximator of a multivariate normal density?
Let $g: \R ^n \to \R $ be a normal density
with mean $\mu \in \R ^d$ and covariance
$\Sigma \in \mathbf{S} ^d_{++}$.
The normal density $f^*_T: \R ^d \to \R $ with
mean $\mu $ and precision matrix $P$ defined by
where $\pa{i}$ is the parent of $i$ in an
optimal approximator tree $T$ ($i = 2, \dots ,
n)$ is an optimal tree approximator of $g$.
Using Proposition 1 of Best Tree Density
Approximators, express an optimal tree
approximator of $g$ by
\[
(1/c)
\exp\left(
-\frac{1}{2}
\left(
\Sigma _{11}^{-1}\bar{x}_1^2 +
\sum_{i \neq 1}
\left(\bar{x}_i -
\Sigma _{i,\pa{i}}\Sigma _{\pa{i},\pa{i}}^{-1}\bar{x}_{\pa{i}}\right)^2\Sigma _{i\mid\pa{i}}^{-1}
\right)
\right)
\]
Second, express the quadratic in the
exponential as
\[
\Sigma _{11}^{-1}\bar{x}_1^2 +
\sum_{i \neq 1}
\left[
\Sigma _{i\mid\pa{i}}^{-1}
\bar{x}_i^2
-
2
\Sigma _{i,\pa{i}}\Sigma _{\pa{i},\pa{i}}^{-1}\Sigma _{i\mid\pa{i}}^{-1}
\bar{x}_i\bar{x}_{\pa{i}}
+
\Sigma _{i,\pa{i}}^2\Sigma _{\pa{i},\pa{i}}^{-2}\Sigma _{i\mid\pa{i}}^{-1}
\bar{x}_{\pa{i}}^2
\right]
\]
Third, note that $c$ is $\sqrt{(2\pi )^d\det P^{-1}}$ since $f^*_T$ is a density and so integrates to one.
Notice that $f^*_T$ is a tree normal density.
In particular, notice that we can approximate the empirical normal density of a dataset with a density that factors according to a tree.