\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Variation Measure
Norms
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Total Variation

Why

We want a norm on the space of measures.

Definition

The total variation of finite measure is the variation measure of the base set. We show below that the total variation is a norm on the vector space of finite measures.

Notation

Let $(X, \mathcal{A} )$ be a measurable space and $\mu : X \to \R $ be a finite signed measure. We denote the total variation by $\tvnorm{\mu }$.

Let $\vmeas{\mu }$ be the variation of $\mu $. Then, $\tvnorm{\mu } = \vmeas{\mu }(X)$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view