\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Topological Neighborhoods
Needed by:
Real Convex Bodies
Real Convex Sets
Real Polyhedra
Sheet PDF
Graph PDF

Topological Interiors


Given a subset $A$ of a topological space, a point $x$ is said to be in the interior of $A$ (an interior point of) if $A$ is a neighborhood of $x$. The interior of $A$ is the set of all interior points


The interior of a set $A$ of a topological space is denoted by $\Int(A)$. Less frequently the interior is denoted by $A^\circ$1

  1. We reserve this notation for the polar of a convex set. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view