We bound below the measure that a nonnegative measurable real-valued function exceeds some value by its integral.
Let $(X, \mathcal{A} , \mu )$ be a measure
space.
Let $g: X \to [0, \infty]$ be measurable and
square-integrable.
Then for all $t$ such that $\int t d\mu
\in [0, \int g d\mu )$,
\[
\mu (\Set*{x \in X}{g(x) > t}) \geq \frac{(\int (g - t)
d\mu )^2}{\int g^2d\mu }.
\]
\[ \int (g - t) d\mu \leq \int h d\mu = \int h \chi _{A} d\mu \leq \sqrt{\int h^2 d\mu \int \chi _{A}^2 \; d\mu } \]
Now $g^2 > h^2$, so $\int g^2 d\mu \geq
\int h^2 d\mu $.
Also $\chi _A^2 = \chi _A$ so $\int \chi _A^2
= \mu (A)$.
$h(x) > 0$ if and only if $g(x) \geq t$
for all $x$.
So $A = \Set*{x \in X}{g(x) \geq t}$.
Combining we have:
\[
\int (g - t)d\mu \leq \sqrt{(\int g^2 d\mu ) \mu (A)}.
\]
\[ P(X > t) \geq \frac{ (\E (X) - t)^2 }{ \E {X^2} }. \]
The above is also called the Paley-Zygmund Inequality.