\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Multivariate Real Polynomials
Permutations
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Symmetric Multivariate Real Polynomials

Definition

A polynomial is symmetric if its value is unchanged under all permutations of its arguments. I.e., a polynomial $f: \R ^n \to \R $ is symmetric if

\[ f(x) = f(x \circ g) \quad \text{for all permutations } g \text{ of } \set{1, \dots , n} \]

Example

The polynomial $f: \R ^n \to \R $ defined by

\[ f(x_1, \dots , x_n) = x_1 + x_2 + \cdots + x_n \quad \text{for all } x_1, \dots , x_n \in \R \]

is symmetric.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view