We want a complete norm on the vector space of continuous functions.
Let $R$ denote the real numbers. Let $\seq{f}$ be an egoprox sequence in $C[a, b]$.
Candidate. $\seq{f}$ is egoprox means
$\forall \epsilon > 0, \exists N$ so that
\[
m, n > N \implies \supnorm{f_n - f_m} < \epsilon .
\]
Candidate is Limit.
First, we argue that
$\supnorm{f_n - f} \goesto 0$
as $n \goesto \infty$.
Since $\seq{f}$ is an egoprox sequence, there
exists $n_0$ so that
\[
n,m \geq n_0
\implies
\supnorm{f_n - f_m} < \epsilon /2.
\] \[
n,m \geq n_0
\implies
\abs{f_n(x) - f_m(x)} < \epsilon /2.
\] \[
\lim_{m \to \infty} \abs{f_n(x) - f_m(x)}
\leq \epsilon /2 < \epsilon .
\] \[
\lim_{m \to \infty}
\abs{f_n(x) - f_m(x)}
=
\abs{f_n(x) - f(x)}.
\]
Limit is Continuous.
Next, we argue that $f$ is continuous.
Let $x_0 \in [a, b]$.
Let $\epsilon > 0$.
Since $f_n \goesto f$ there exists
$n_0$ so that
\[
\supnorm{f_{n_0} - f} < \epsilon /3.
\] \[
\begin{aligned}
\abs{f(x_0) - f(x)} \leq \abs{f(x_0) - f_{n_0}(x_0)} +
\abs{f_{n_0}(x_0) - f(x)},
\end{aligned}
\] \[
\begin{aligned}
\abs{f(x_0) - f(x)} &< \epsilon /3 + \abs{f_{n_0}(x_0) -
f(x)},
\end{aligned}
\] \[
\abs{f(x_0) - f(x)} < \epsilon /3 + \abs{f_{n_0}(x_0) -
f_{n_0}(x)} + \abs{f_{n_0}(x) - f(x)} \\
\] \[
\begin{aligned}
\abs{f(x_0) - f(x)} < \epsilon /3 + \abs{f_{n_0}(x_0) -
f_{n_0}(x)} + \epsilon /3 \\
\end{aligned}
\] \[
\abs{x_0 - x} < \delta
\implies
\abs{f_{n_0}(x_0) - f_{n_0}(x)} < \epsilon /3,
\] \[
\begin{aligned}
\abs{f(x_0) - f(x)} &< \epsilon /3 + \epsilon /3 +
\epsilon /3 = \epsilon .
\end{aligned}
\]