\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Vector Subspaces
Translate Sets
Needed by:
Subspace Direct Sums
Links:
Sheet PDF
Graph PDF

Subspace Sums

Why

Definition

Suppose $U_1, \dots , U_m$ are subsets of $V$ The sum of $U_1, \dots , U_m$ is the set

\[ \Set{u_1 + \cdots + u_m}{u_1 \in U_1, \dots , u_m \in U_m} \]

For subspaces

The sum of two subspaces is a subspace. Moreover, it is the smallest subspace containing both subspaces.

Suppose $U_1, \dots , U_m$ are subspaces of a vector space $V$. The $U_1 + \cdots + U_m$ is the smallest subspace containing $U_1, \dots , U_m$
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view