\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Subspace Dimensions
Orthogonal Complements
Needed by:
Real Hyperplanes
Links:
Sheet PDF
Graph PDF

Subspace Orthogonal Complements

Main result

The orthogonal complement of a subspace is a subspace.
Let $L \subset \R ^n$ be a subspace. Then

\[ \dim L + \dim L^{\perp } = n. \]

Let $b_1, \dots , b_m$ be a basis for a subspace $L \subset \R ^n$. Then $x \perp L$ if and only if $x \perp b_i$ for $i = \upto{m}$.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view