\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Subspace Sums
Needed by:
Complete Inner Product Decomposition
Links:
Sheet PDF
Graph PDF

Subspace Direct Sums

Definition

Suppose $U_1, \dots , U_m$ are subspaces of a vector space $V$. The sum $M = U_1 + \cdots + U_m$ is called a direct sum if each element $x \in M$ can only be written in one way as a sum

\[ x = u_1 + \cdots + u_m \]

for $u_i \in U_i$, $i = 1, \dots , m$. We call the sum direct. Conversely, we call $U_1, \dots , U_m$ a decomposition of $M$.

Notation

If $M$ is a direct sum of $U_1, \dots , U_m$, we use the notation $\oplus$. We write

\[ M = U_1 \oplus \cdots \oplus U_m \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view