\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Subspace Dimensions
Needed by:
None.
Links:
Sheet PDF
Graph PDF
Wikipedia

Subspace Codimensions

Definition

Suppose $W$ is a subspace of a vector space $V$. The codimension of $W$ in $V$ is the difference of the dimension of $V$ and the dimension of $W$. In this context, $V$ is called the ambient space of $W$.

Notation

As usual, let $\dim W$ and $\dim V$ denote the dimensions of $W$ and $V$, respectively We denote the codomension of $W$ in $V$ by $\codim(W)$

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view