\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Knapsack Problems
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Subset Sum Problems

Why

We consider the case in which the profit and weight function of teh knapsack problem are identical.

Definition

Suppose $(p, w, c)$ is knapsack problem data and $w = p$. Then we are interested in finding $x \in {0,1}^n$ to

\[ \begin{aligned} \text{maximize} & \quad \textstyle \sum_{i = 1}^{n} q(i) \chi _{H}(i) \\ \text{subject to} & \quad \textstyle \sum_{i = 1}^{n} w_i \chi _{H}(i) \leq c x_i \in \{0,1\}^n \quad i = 1, \dots , n \end{aligned} \]

This special case of the knapsack problem is often called the subset sum problem.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view