\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Groups
Needed by:
Ring Ideals
Links:
Sheet PDF
Graph PDF
Wikipedia

Subgroups

Definition

Given a group $(G, \circ)$ and $H \subset G$, suppose $(H, \circ\mid _{\mid H})$ is also group. Then we call it a subgroup of $(G, \circ)$. If $H \subsetneq G$, we call $H$ a proper subgroup.

As we sometimes refer to the group $G$ without reference to the operation $\circ$, we similarly sometimes refer to the subgroup $H$ without reference to the operation $\circ_{\mid H}$.

Examples

Trivial subgroup. Suppose $e \in G$ is the identity element of the group $(G, \circ)$. Then $\set{e}$ is a subgroup of of $(G, \circ)$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view