\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Partial Derivatives
Smooth Real Functions
Needed by:
Smooth Functions
Links:
Sheet PDF
Graph PDF

Smooth Multivariate Functions

Why

What is the natural generalization of a smooth function to functions defined on sets of $\R ^k$.1

Definition

Let $U \subset \R ^d$ be an open set (see Real Open Sets). A function $f: U \to \R $ is smooth if all its partial derivatives exists and are continuous.

More generally, let $X \subset \R ^d$. A function $f: X \to R$ is smooth if there exists an open set $U \subset \R ^d$ and a smooth $F: U \to \R $ so that $F(x) = f(x)$ for all $x \in U \cap X$.

Example

The identity map is smooth. In other words, let $f: \R ^d \to \R $ be so that $X \subset \R ^d$. Then $f: X \to \R $ s

Properties

The composition of two smooth functions is smooth.

  1. Future editions will expand. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view