\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Smooth Multivariate Functions
Needed by:
Diffeomorphisms
Smooth Manifolds
Links:
Sheet PDF
Graph PDF

Smooth Functions

Why

What is the generalisation of smooth functions between Euclidean spaces.

Definition

Let $U \subset \R ^n$ be open. A function $f: U \to \R ^m$ is smooth if each of its components is smooth.

More generally, let $X \subset \R ^n$ (not necessarily open). We call $g: X \to \R ^m$ smooth if for each $x \in X$ there exists an open set $V \subset \R ^n$ with $x \in V$ and smooth function $G: U \to \R ^n$ so that $G(y) = g(y)$ for all $y \in U \cap X$. In this case we say that $g$ can be locally extended to a smooth map on open sets.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view