\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Simple Integrals
Area
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Simple Integral Monotonicity

Why

If one rectangle contains another rectangle, the area of the first should be larger than the area of the second. Our definition of integral for simple functions carries this property.

Result

The simple non-negative integral operator is monotone.
Suppose $(X, \mathcal{A} , \mu )$ is a measure space. Suppose that $f, g \in \SimpleF_+(X)$ with $f \leq g$. Then $f - g \in \SimpleF_+(X)$, so

\[ \begin{aligned} \int g d\mu &= \int (f + (g - f)) d\mu \\ &\overset{(a)}{=} \int f d\mu + \int (g - f) d\mu \\ &\overset{(b)}{\geq} \int f d\mu \end{aligned} \]

where (a) follows from the linearity and (b) from non-negativity of the non-negative simple integral operator.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view