\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Simple Integrals
Needed by:
Real Integral Homogeneity
Links:
Sheet PDF
Graph PDF

Simple Integral Homogeneity

Why

If we stack a rectangle on top of itself we have a rectangle twice the height. The additivity principle says that the area of the so-formed rectangle is the sum of the areas of the stacked rectangles. Our definition of integral for simple functions has this property.

Result

The simple non-negative integral operator is homogenous over non-negative real values.
Let $(X, \mathcal{A} , \mu )$ be a measure space. Let $\SimpleF_+(X)$ denote the non-negative real-valued simple functions on $X$. Define $s: \SimpleF_+(X) \to [0, \infty]$ by $s(f) = \int f d\mu $ for $f \in \SimpleF_+(X)$.

In this notation, we want to show that $s(\alpha f) = \alpha s(f)$ for all $\alpha \in [0, \infty)$ and $f \in \SimpleF_+(X)$. Toward this end, let $f \in \SimpleF_+(X)$ with the simple partition $\set{A_n} \subset \mathcal{A} $ and $\set{a_n} \subset [0, \infty]$.

First, let $\alpha \in (0, \infty)$. Then $\alpha f \in \SimpleF_+(X)$, with the simple partition $\set{A_n} \subset \mathcal{A} $ and $\set{\alpha a_n} \subset [0, \infty]$.

\[ s(\alpha f) = \sum_{i = 1}^{n} \alpha a_n \mu (A_i) = \alpha \sum_{i = 1}^{n} a_n \mu (A_i) = \alpha s(f). \]

If $\alpha = 0$, then $\alpha f$ is uniformly zero; it is the non-negative simple with partition $\set{X}$ and $\set{0}$. Regardless of the measure of $X$, this non-negative simple function is zero. Recall that we define $0 \cdot \infty = \infty \cdot 0 = 0$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view