\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needed by:
Loss Functions
Relative Entropy
Sheet PDF
Graph PDF

Similarity Functions


We want to quantify the similarity of two elements of a set. In other words, we want a function which associates two objects of a set with a real number quantifying how similar they are. Our intuition comes from distance functions.


A similarity function is a function on a cross product of a set with itself that is zero on all ordered pairs whose first and second coordinates are the same. Notice that a similarity function can associate zero with ordered pairs of different elements also. That is, on pairs of non-identical elements. However, this value must be nonnegative. The similarity function may or may not be symmetric.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view