\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Set Unions
Set Differences
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Set Rings

Definition

A set ring (or Boolean set ring, ring of sets, Boolean ring of sets) is a nonempty set of sets $R$ such that if

\[ E \in R \quad \text{and} \quad F \in R \]

then

\[ E \cup F \in R \quad \text{and} \quad E \setminus F \in R. \]

In other words, a ring is a  nonempty set of sets which is closed under unions and differences.

Every ring contains the empty set, for if $E \in R$, then $E - E = \varnothing \in R$.

Also, since

\[ E \setminus F = (E \cup F) \setminus F, \]

every nonempty set that is closed under unions and proper differences is a ring.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view