A set ring (or
Boolean set ring,
ring of sets,
Boolean ring of sets) is
a nonempty set of sets $R$ such that if
\[
E \in R \quad \text{and} \quad F \in R
\] \[
E \cup F \in R \quad \text{and} \quad E \setminus F \in R.
\]
Every ring contains the empty set, for if $E \in R$, then $E - E = \varnothing \in R$.
Also, since
\[
E \setminus F = (E \cup F) \setminus F,
\]