\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Finite Sets
Needed by:
Cardinality
Categorical Outcome Variables
Decision Processes
Decisions
Directed Graphs
Empirical Distribution of a Dataset
Finite Set Examples
Games
Lists
Number of Disjoint Unions
Outcome Probabilities
Permutations
Undirected Graphs
Links:
Sheet PDF
Graph PDF

Set Numbers

Why

We want to count the number of elements in a set.

Defining result

A set can be equivalent to at most one natural number.1

The number (or size) of a finite set is the unique natural number equivalent to it.

Notation

We denote the number of a set by $\num{A}$. Equally good notation, which we will not use in these sheets, is $\#(A)$.

Restriction to a finite set

If we restrict $E \mapsto \num{E}$ to the domain $\powerset{X}$ of some set $X$ then $\num{\cdot }: \powerset{X} \to \omega $ is a function.2

Properties

$A \subset B \implies \num{A} \leq \num{B}$

  1. A proof will appear in future editions. ↩︎
  2. Future editions will clarify this point. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view