\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Sequence Space
Norms
Complex Numbers
Real Series
Needed by:
Linear Functionals
Links:
Sheet PDF
Graph PDF

Sequence Spaces

Why

We can view the set of sequences as vector spaces and give them norms.

Bounded sequences

Let $\C ^\N $ denote the set of complex-valued sequences. Define $\ell ^{\infty} \subset \C ^{\N }$ to be the set of all bounded sequences. That is,

\[ \ell ^{\infty} = \Set*{x \in \C ^{\N }}{\exists M \in \R \text{ with } \abs{x_i} < M \text{ for all } i}. \]

Then $\ell ^\infty$ with componentwise addition and scalar multiplication is a vector space.

Define $\norm{\cdot }_{\infty}: \ell ^{\infty} \to \R $ by

\[ \norm{x}_{\infty} = \sup_{n \in \N } \abs{x_n}. \]

Then $\norm{\cdot}_{\infty}$ is a norm on $\ell ^\infty$.

Absolutely summable sequences

Let $\ell ^1 \subset \C ^\N $ denote the set of all absolutely summable sequences. In other words, for $x \in \C ^{\N }$, $x \in \ell ^1$ if

\[ \sum_{n = 1}^{\infty} \abs{x_n} < \infty. \]

Then $\ell ^1$ is a vector space with componentwise addition and scalar multiplication.

Define $\norm{\cdot }_{1}: \ell ^{1} \to \R $ by

\[ \norm{x}_{1} = \sum_{n = 1}^{\infty} \abs{x_n} \]

Then $\norm{\cdot }_{1}$ is a norm on $\ell ^1$.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view