\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Operators
Adjoints of Linear Transformations
Needed by:
Normal Operators
Links:
Sheet PDF
Graph PDF

Self-Adjoint Operators

Definition

An operator $T \in \mathcal{L} (V)$ is called self-adjoint (or Hermitian) if the adjoint of $T$ is itself. In symbols, $T$ is self-adjoint if $T = T^*$. In other words, $T$ is self-adjoint if and only if

\[ \ip{Tv, w} = \ip{v, Tw} \quad \text{for all } v, w \in V \]

Properties

Suppose $S, T \in \mathcal{L} (V)$ are self-adjoint. The $S + T$ are self-adjoint. Also $\lambda T$ is adjoint for all real $\lambda $.

Notation

We will see that the adjoint on $\mathcal{L} (V)$ plays a role similar to complex conjugation on $\C $. The self-adjoint operators will seen to be analogous to the real numbers. A complex number is real if and only if $z = \Cconj{z}$. Similarly, an operator is self-adjoint if and only if $T = T^*$.

Characterization for complex space

Suppose $V$ is a complex inner product space and let $T \in \mathcal{L} (V)$. Then

\[ T = T^* \quad \iff \quad (\forall v \in V)\;(\ip{Tv, v} \in \R ) \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view