\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Differentiable Functions
Real Open Sets
Needed by:
Higher Order Derivatives
Linear Functionals
Links:
Sheet PDF
Graph PDF

Second Derivatives

Definition

Let $A \subset \R $ open. Let $f: A \to \R $ be differentiable with derivative $f': \R \to \R $. We call $f$ twice differentiable (or two times differentiable) if its derivative $f'$ is differentiable. In this case, we call the derivative of $f'$ the second derivative of $f$.

Notation

Let $A \subset R$. The second derivative of the twice-differentiable function $f: A \to \R $ is sometimes denoted $f''(x): A \to \R $

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view