Can we represent the function associating a linear system with its row reduction by matrix multiplication?
The following proposition affirmatively answers the question.
For this reason, we call $L$ in the above
proposition a row reducer
matrix or row reducing
matrix or row
reducer.
The row reducer matrix for the $k$th reduction
of $(A, b)$ has the form
\[
L_k = \barray{
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & A_{ik}/A_{kk} & 1 & &\\
& & \vdots & & \ddots & & \\
& & A_{mk}/A_{kk} & & & 1
}
\]
For example, the $(1,1)$-reduction of $(A, b)$
in which
\[
A = \barray{
2 & 1 & 1 & 0 \\
4 & 3 & 3 & 1 \\
6 & 7 & 9 & 5 \\
8 & 7 & 9 & 8 \\
} \text{ and } b = \barray{
1 \\
2 \\
3 \\
4 \\
}.
\] \[
A' = \barray{
2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 3 & 5 & 5 \\
0 & 4 & 6 & 8 \\
} \text{ and } b' = \barray{
1 \\
0 \\
-1 \\
1\\
}.
\] \[
L = \barray{
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-4 & 0 & 1 & 0 \\
-3 & 0 & 0 & 1
}.
\]