\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Complex Numbers
Orthogonal Matrices
Matrix Transpose
Ellipsoids
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Rotate Scale Rotate Decomposition

Why

Every matrix $A \in \R ^{m \times n}$ maps the unit ball in $\R ^n$ to an ellipsoid in $\R ^{m}$.

Definition

A rotate scale rotate decomposition (or rotate scale rotate factorization) of a matrix $A \in \R ^{m \times n}$ is an ordered triple $(U, S, V)$ where $U$ and $V$ are orthgonal and $S$ is diagonal decreasing ($S_{11} \geq S_{22} \geq \dots \geq S_{pp}$, where $p = \min\set{m, n}$) satisfying

\[ A = USV^\top . \]

Other (universal) terminology includes the singular value decomposition or SVD of $A$. We call diagonal elements of $S$ the singular values of $A$. We call the column vectors of $U$ the left singular vectors or output singular vectors. We call the column vectors of $V$ the right singular vectors or input singular vectors. We refer to them collectively as the singular vectors.

\[ Av_i = \sigma _i u_i. \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view