\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Rings
Subgroups
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Ring Ideals

Definition

Given a ring $(R, +, \cdot )$ with additive group $(R, +)$. A subset $I \subset R$ is called a left ideal if

  1. $(I, +)$ is a subgroup of $(R, +)$
  2. $r\cdot x \in I$ for every $r \in R$ and $x \in I$
Similarly, it is called a left ideal if (2) is replaced with $x \cdot r \in I$ for every $r \in R$ and $x \in I$. If $I$ is an ideal if it is both a left and right ideal.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view