\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Optimization Problems
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Resource Allocation Problems

Why1

Definition

We want to allocate a resource among $n$ entities to maximize some measure of “return” or “profit.”

Let $B \in \R $. Let $R_i: \R \to \R $ be a function which gives the return for allocating entity $i$ the amount $x_i$ of the resource. Let $\mathcal{X} = \Set*{x \in \R ^n}{x \geq 0, \sum_i x_i = B}$ Define $f: \R ^n \to \R $ by $f(x) = \sum_{i = 1}^{n} R_i(x_i)$. We call the optimization problem $(\mathcal{X} , f)$ a single-resource allocation problem. In this case we call $x \in \R ^{n}$ an allocation and we call $B$ the budget.


  1. Future editions will include. For now this sheet serves as an example of a continuous optimization problem. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view