\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Complete Real Inner Product Spaces
Probability Measures
Multivariate Normals
Covariance
Inner Product Linear Functional Representations
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Reproducing Kernels

Definition

Let $X$ be a (nonempty) set and $k$ a field. Let $F \subset (X \to k)$ and let $\ip{\cdot , \cdot }: F \times F \to k$ be an inner product so that $(F, \ip{\cdot ,\cdot })$ is a complete inner product space.

A reproducing kernel of $(F, \ip{\cdot ,\cdot })$ is a map $R: X \times X \to k$ satisfying (1) for every $y \in X$ the function $R(\cdot , y): X \to k$ is an element of $F$ and (2) for every $f \in F$, at every $y \in X$, $f(y) = \ip{f, R(\cdot , y)}$ (the reproducing property).

$R$ is called a “reproducing” kernel because of the following implication of the reproducing property. Notice that $R(\cdot , y) \in F$. For this reason,

Properties

If a reproducing kernel exists, it is unique.

Separate sheet

Let $X$ be nonempty (index) set. For example, $X$ may be $\upto{N}$, $\Z $, $[0, 1]$, $\R ^d$, $\Set{x \in \R ^3}{\norm{x} \leq 1}$ (the unit sphere), or $\Set{x \in \R ^3}{\alpha \leq \norm{x} \leq \beta }$ (the atmosphere, or volume between two concentric spheres).

A symmetric, real-valued function $k: X \times X \to \R $ of two variables is said to be positive semidefinite if for any $n \in \N $, for any real $a_1, \dots , a_n \in \R $ and $x_1, \dots , x_n \in X$, we have

\[ \sum_{i, j = 1}^{n} a_ia_j k(x_i, x_j) \geq 0, \]

and positive definite if the above holds with \say{$>$}.1

Positive semidefinite kernels are useful for the following constructive reason:

Let $X \neq \varnothing$ be a set. If $k: X \times X \to \R $ is positive semidefinite, then there exists a probability space $(\Omega , \C A, \mathbfsf{P} )$ and a family of zero-mean normal real-valued random variables $\set{f_x: \Omega \to \R }_{x \in X}$ with covariance function $k$, that is,

\[ \E f(a)f(b) = k(a, b), \quad \text{ for all } a, b \in X. \]

This result is known by the names Kolmogorov extension theorem, Kolmogorov existence theorem, Kolmogorov consistency theorem and Daniell-Kolmogorov theorem.
  1. Some authors use the term “positive definite” for our term positive semidefinite and the term “strictly positive definite” for our term “positive definite.” ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view