\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Characteristic Functions
Real Functions
Rectangles
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Rectangular Functions

Why

We represent rectangles by functions.

Definition

A rectangular function corresponds to a characterstic function of an interval. It represents a rectangle whose width is the interval and whose height is one.

Notation

Let $A$ be a non-empty set and $B \subset A$. Recall that we denote the characteristic function of $B$ by $\chi _{B}$.

Now suppose that $A \subset \R $. If we embed $\set{0, 1} = 2 \in \N $ in $\R $ by associating $0$ to $0_{\R }$ and $1$ to $1_{\R }$ then every characteristic function is identified with a function from $\R $ to $\R $.

In particular, notice that if $B$ is an interval and $\alpha $ is a real number then $\alpha \chi _{B}$ is a rectangle with height $\alpha $.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view