\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Linear Combinations
Needed by:
Real Subspaces
Real Vector Bases
Span
Links:
Sheet PDF
Graph PDF

Real Vectors Span

Definition

The span of a finite set of vectors $v_1, \dots , v_k \in \R ^n$ is the set of all linear combiniations of the vectors $v_1, \dots , v_k$.

More generally, given a set $A \subset \R ^n$ the span of $A$ is the set of all linear combinations formed from finite subsets of $A$. This is sometimes also called the linear hull of $A$.

The span of a set of vectors is a subspace.

Notation

We denote the span of $v_1, \dots , x_k \in \R ^d$ by

\[ \span(\set{v_1, \dots , v_k}) \]

Other notation in use, in particular when we are dealing with the span of a set $A \subset \R ^d$ is $\lin A$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view