Let $f: \R \to \R $. Then $f$ is uniformly continuous at $x \in \R $ if \[ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \R ) (\abs{x - y} < \delta \Rightarrow \abs{f(x) - f(y)} < \epsilon ) \] for all $y \in \R $.
\[ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \R ) (\abs{x - y} < \delta \Rightarrow \abs{f(x) - f(y)} < \epsilon ) \]