\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Numbers
Needed by:
Real Additive Inverses
Links:
Sheet PDF
Graph PDF

Real Sums

Why

We want to add real numbers.1

Definition

The real sum of two real numbers $R$ and $S$ is the set

\[ \Set{t \in \Q }{\exists r \in R, s \in S \text{ with } t = r + s}. \]

Notation

Suppose $x, y \in \R $ are two numbers. We denote the sum of $x$ and $y$ by $x + y$.

Properties

We can show the following.2

$x + (y + z) = (x + y) + z$
$x + y = y + x$
The set of negative rational numbers is the additive identity.

We denote the additive identity of $\R $ under $+$ by $0_{\R }$. When it is clear from context, we call $0_{\R }$ “zero”.


  1. Future editions will expand. ↩︎
  2. Accounts will appear in future editions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view