\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Matrices with Orthonormal Columns
Needed by:
Projections On Subspaces
Real Affine Set Representations
Links:
Sheet PDF
Graph PDF

Real Subspace Representations

Why

How should we represent a subspace computationally?

Definition

Given a subspace $S \in \R ^n$, since it is finite dimensional, there exists a finite basis for the space. This basis can be made orthonormal. Therefore every subspace $S$ has an orthonormal basis $q_1, \dots , q_k$, where $k$ is the dimension of the subspace. We can stack these as a matrix. Define $Q \in \R ^{n \times k}$ by

\[ Q = \bmat{q_1 & q_2 & \cdots & q_k}. \]

For every $x \in S$, there exists unique coefficients $z \in \R ^k$ so that

\[ x = Qz. \]

Therefore we have a one-to-one correspondence between vectors $x \in S$ and their coordinates $z \in \R ^k$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view