A subset $S \subset \mathbfsf{S} _{++}^n$ of the
cone of positive semidefinite matrices is a
spectrahedron (or
real spectrahedron) if
there exists an affine subset $M \subset
\mathbfsf{S} _{++}^n$ so that
\[
S = \mathbfsf{S} _{++}^n \cap M
\]