\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Real Numbers
Real Limits
Needed by:
Topological Closures
Sheet PDF
Graph PDF

Real Set Closures


Suppose $A \subset \R $. A point $x \in \R $ is a limit point of $A$ if there exists a sequence $a: \N \to A$ so that $a_n \to x$ In other words, the limit points of $A$ are the points which are the limits of some sequences in $A$.

It is possible that $x \not\in A$ but $x$ is a limit point. The closure of $A$ is the set containing $A$ and all limit points of $A$.


The closure of $A \subset \R $ is denoted $\bar{A}$. Other notation includes $\cl(A)$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view