\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Real Numbers
Real Algebraic Sets
Needed by:
Real Algebraic Geometry
Sheet PDF
Graph PDF

Real Semialgebraic Sets


A set $A \in \R ^n$ is semialgebraic if there exist polynomials $P_1, \dots , P_n$ and polynomials $Q_1, \dots , Q_m$ such that

\[ A = \bigcup_{i = 1}^{n} \Set{x \in \R ^n}{P_i(x) = 0} \cup \bigcup_{j = 1}^{m} \Set{x \in \R ^{n}}{Q_j(x) \leq 0} \]

In other words, a semialgebraic set can be written as a finite union of sets defined by polynomial equalities and inequalities.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view