\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Functions
Real Polynomials
Needed by:
Complex Rational Functions
Links:
Sheet PDF
Graph PDF

Real Rational Functions

Definition

A real rational function (or rational function or fractional function) is a function $f: \R \to \R $ for which there exists polynomials $p: \R \to \R $ and $q: \R \to \R $ so that $f(x) = p(x) / q(x)$ for all $x \in \R $.

In this case we call $p$ the numerator polynomial (and $p$ the numerator function) and $q$ the denominator polynomial (and $q$ the denominator function). Of course, the language rational is in reference to the fact that if $p$ and $q$ are integer-valued functions, then the function $f$ is a rational-valued function (seeRational Numbers).

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view