\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Order
Rational Arithmetic
Real Additive Inverses
Needed by:
Real Multiplicative Inverses
Links:
Sheet PDF
Graph PDF

Real Products

Why

We want to multiply real numbers.1

Definition

The real product of two real numbers $R$ and $S$ is defined

  1. if $R$ or $S$ is $\Set{q \in \Q }{q < 0_{\Q }}$, then the $\Set{q \in \Q }{q < 0_{\Q }}$
  2. otherwise,
    1. if $R$ or $S$ is $0_{\R }$, then $0_{\R }$.
    2. if $R,S \neq 0_{\R }$ and $0_{\R } \in R, S$, let $T$ be

      \[ \Set{t \in \Q }{r \in R, s \in S, r, s \geq 0_{\Q }, t = r\cdot s} \]

      then $T \cup \Set{q \in \Q }{q \leq 0_{\Q }}$2
    3. If $R, S \neq 0_{\R }$, $0_{\R } \in R$ and $0_{\R } \not\in S$, then the additive inverse of the product of $-R$ with $S$.
    4. If $R, S \neq 0_{\R }$, $0_{\R } \not\in R$ and $0_{\R } \in S$, then the additive inverse of the product of $R$ with $-S$.
    5. If $R, S \neq 0_{\R }$, and $0_{\R } \not\in R,S$, then the product of $-R$ with $-S$.

Notation

We denote the product of two real numbers $x$ and $y$ by $x \cdot y$.

Properties

$x + (y + z) = (x + y) + z$
$x + y = y + x$
The set of all rationals less than $1_{\Q }$ is the multiplicative identity.

We denote the the multiplicative identity by $1_{\R }$. When it is clear from context, we call $1_{\R }$ “one”.


  1. Future editions will expand. ↩︎
  2. We use $\geq$ in the usual way, it will be defined earlier in future editions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view