\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Quadratic Forms
Symmetric Real Matrices
Needed by:
Eigenvalues and Definiteness
Ellipsoids
Multivariate Normals
Real Positive Semidefinite Matrix Cone
Links:
Sheet PDF
Graph PDF

Real Positive Semidefinite Matrices

Definition

Let $A \in \mathbfsf{S} ^n$ (i.e., $A \in \R ^{n \times n}$ and symmetric). $A$ is positive definite if

\[ x^\top A x > 0 \quad \text{for all nonzero } x \in \R ^d \]

$A$ is positive semidefinite (or nonnegative definite) if

\[ x^\top A x \geq 0 \quad \text{for all } x \in \R ^d \]

Notation

We denote the set of positive definite $d$ by $d$ matrices by $\mathbfsf{S} _{++}^d$. We denote the set of positive semidefinite $d$ by $d$ matrices by $\mathbfsf{S} _{+}^d$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view